TEAM 8
2.1)
8 . Construct a trurh table for each of the following compound statements , where p , q , r denote primitive statements.
a) ~(p v ~q) à ~p
p | q | ~p | ~q | p v ~q | ~(p v ~q) | ~(p v ~q)à ~p |
1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 1 |
b) P à (q à r )
p | q | r | q à r | p à (q à r) |
1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 1 |
c) (p à q) à r
p | q | R | (p à q) | (p à q) à r |
1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 |
d) ( p à q ) à ( q à p )
p | q | P à q | q à p | ( p à q ) à ( q à p ) |
1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 |
e) [p ^ (p à q )] à q
p | q | pàq | [p ^ ( p à q) ] | [p ^ ( p à q) ] à q |
1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 1 |
f) ( p ^ q )à p
P | q | P ^ q | ( p ^ q ) à p |
1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 |
0 | 0 | 0 | 1 |
g) q ↔ ( ~p V ~q )
p | q | ~p | ~q | ~p V ~q | q↔ (~pV~q) |
1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 0 |
h) [( p à q ) ^ ( q à r )] à ( pà r )
X y
p | q | R | P à q | q à r | ( p à q ) ^ ( q à r ) | P à r | X à y |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
2.2)
8) Write the dual for
(a) q à p
let s : q à p
s : ~q V p
The dual is : ~q ^ p
(b) p à ( q ^ r )
let s : p à ( q ^ r )
s : ~p v ( q ^ r )
The dual of s : ~p ^ ( q v r )
(c) p ↔ q
let s : p ↔ q
s : (~p ^ ~q ) v ( p ^ q )
The dual of s : (~p v ~q ) ^ ( p v q )
(d) p q
let s : p q
s : ( ~p ^ q ) v ( p ^ ~q )
The dual of s : ( ~p v q ) ^ ( p v ~q )
2.4)
(1 ) Let p(x) , q(x) denote the following open statements
P(x) : x ≤ 3
q(x) : x+1 is odd
if the universe consists of all integers,
what are the truth values of the following statements ?
(a) q(1)
q(1) : 1+1 is odd
: 2 is odd which is false
The truth value of q(1) is 0 (false).
(b) ~p(3)
~p(3) : ~(3 ≤ 3)
: 3 > 3 which is false
The truth value of ~p(3) is 0 (false).
(c) P(7) v q(7)
P(7) v q(7) : (7 ≤ 3) v (7+1 is odd)
: (7 ≤ 3) v (8 is odd)
: 0(false) v 0(false)
: 0 (false)
The truth value of p(7) v q(7) is 0 (false).
(d) P(3) ^ q(4)
P(3) ^ q(4) : (3 ≤ 3) ^ ( 5 is odd )
: 1 (true) ^ 1 (true)
: 1 (true)
The truth value of p(3) ^ q(4) is 1 (true).
(e) ~( p(-4) v q(-3))
~( p(-4) v q(-3)) : ~((-4 ≤ 3 ) v (-2 is odd ))
: ~( 1 v 0 )
: ~ (1)
: 0 (false)
The truth value of ~( p(-4) v q(-3)) is 0 (false) .
(f) ~p( -4 ) ^ ~q( -3 )
~p( -4 ) ^ ~q( -3 ) : ~( -4 ≤ 3 ) ^ ~( -2 is odd )
: ~( 1 ) ^ ~( 0 )
: 0 ^ 1
: 0 (false)
The truth value of ~p( -4 ) ^ ~q( -3 ) is 0 (false).
3.1)
(8) For A = { 1 , 2 , 3 , 4 , 5 , 6 , 7 }. Detemine the number of
a) Subsets of A
è The number of subsets of A = 2^(7)
=128
b) Non-emoty subsets of A
è The number of non-empty subsets of A = 2^(7) – 1
=127
c) Proper subsets of A
è The number of proper subsets of A = 2^(7) - 1
= 127
d) Non-empty proper subsets of A
è Non-empty proper subsets of A = number of proper subsets of A – 1
= ( 2^(7) - 1 ) - 1
= 126
e) Substes of A containing three elements.
è Substes of A containing three elements = 7C3
=35
f) Subsets of A containing 1 , 2
è Here in this set { 1 , 2 } are considered as constant for every subset
The remaining 5 elements can be combined to make subsets of A containing 1 , 2 is
= 5C5 + 5C4 + 5C3 + 5C2 + 5C1
= 1 + 5 + 10 + 10 + 5 + 1
= 32
g) Subsets of A containing five elements , including 1 , 2.
è Subsets of A containing five elements , including 1 , 2 = 5C3
= 10
h) Subsets of A with an even number of elements.
è Subsets of A with an even number of elements
= 7C2 + 7C4 + 7C6
= 21 + 35 + 7
= 63
i) Subsets of A with even number of elements.
è Subsets of A with even number of elements
=7C1 + 7C3 + 7C5 + 7C7
= 7 + 35 + 21 + 1
=64
j) If a set A has 63 proper subsets , what is |A|
è Number of proper subsets = 2^(n) – 1
63 = 2^(n) – 1
64 = 2^(n)_
2^(6) = 2^(n)
Therefore , n = 6
|A| = 6
k) If a set B has 64 subsets of odd cardinality what is |B|
è Since 7C1 + 7C3 + 7C5 + 7C7 = 64
Hence, |B| = 7.
l) Generalize the result of part (b)
è If set contains n elements then number of non-empty subsets are 2^(n) - 1.
...................................................... THE END .................................................................
No comments:
Post a Comment