Tuesday, November 16, 2010

                                                                    TEAM 7

 Exercises2.2

7.a) if p,q are primitive statements, prove that
                   (~pvq)^(p^(p^q))  ó(p^q)
                                                                                                                               
P
q
~p
~pVq
p^q
p^(p^q)
(~pVq)^(p^(p^q)
p^q
1
1
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
1
0
0
0
0

The  above equation is logically proved
The last two coloumns are equal

                                                           OR

               Steps                                                                                     Reasons
1.           (~pVq)                                                                     Premise

2.              P                                                                            Premise

3.       Therefore:      q                                                       step1,2 Rule of                                                                                                                                                                                                               Disjunctive Syllogism

4.        p^q                                                                                 premise

5.       Therefore:  p^q                                                            step 2,3     rule of  
                                                                                                   conjunction
            




b)        write  the  dual of the logical equivalence in   (~pvq)^(p^(p^q))  ó(p^q)
       ans:   = (~p^q)v(pv(pvq))  ó(pvq)









                                                                



                                 Exercie-2.3

7.give the reasons for each step needed to show that the  following argument is valid
  [p^(p->q)^(svr)^(r->~q)] -> (svt)
Ans:
  Steps                                         reasons
1. p                                                premises
2. p->q                                           premises
3. q                                                 step1,2 Rule of detachments
4. r->~q                                          premises
5. q->~r                                   step4 &(r->~q)ó(~~q->~r)ó(q->~r)                         
6. ~r                                          step 3,5 Rule of detachment
7. svr                                         premises
8. s                                     step 6,7& rule of disjunctive syllogism
9.svt                                  step8 & rule of disjunctive Amplification


                                                           Exercise-3.1

7.Let A,B be sets from a universe U.

(a)Write a quantified statement to express the proper subset relation A C B(A subset B).
Ans: For All x[x belongs to A -> x belongs to B] ^ For Some x [x belongs to B ^ x does not belongs to A]

(b)Negate the result in part (a) to determine when A is not the proper subset of B.
Ans:For Some x[x belongs to A ^ x does not belongs to B] Or  For All x[x belongs to B -> x belongs to A]
                                               








                                                          Exercise-2.1

7.Rewrite each of the following statements as an impication in the if-then form.

a)Practicing her serve daily is a sufficient condition for Darci to have a good chance of winning the tennis tournament.
Ans:        p:Darci practices her serve daily.
                 q:she have good chance of winning the tennis                   
                   tournament.
     If Darci practices her serve daily then she will have a good chance of winning the tennis tournament.


b)Fix my air conditioner or I won't pay the rent.
Ans:   p:you do not fix my air coditioner.
            q:I shall not pay the rent.
->If you do not fix my air conditioner,then I shall not pay the rent.

c)Mary will be allowed on Larry's motorcycle only if she wears her helmet.
Ans: p: Mary is to be allowed on Larry's motorcycle.
         q: she must wear her helmet.

->If Mary is to be allowed on Larry's motorcycle,then she must wear her helmet.

………………………………………………………………………………………………
                           














1 comment: