Tuesday, November 16, 2010

TEAM 2



Team – 2

1.   Identify  the Primitive statements in the following.

a)   In 2003 George W. Bush was the president of the United States.
è   Primitive statement (has true/false value).
b)  X+3 is a positive integer.
è   Non primitive statement
(statement doesn’t have truth/false value- It is open statement).
c)   Fifteen is an even number.
è   Primitive statement (has true/false value).
d)  If Jennifer is late for the party, then her cousin Zachary will be quite angry.
è   Non primitive statement (doesn’t have true/false value).
e)   What time is it?
è   Non Primitive statement
f)    As of June 30,2003, Christine Marie Evert had won the French open  a record seven times.
è   Primitive statement (has true/false value).
2.   Verify the first Absorption Law by means of a truth table.

·       pv(p^q) <=> p

           P
           q
          p^q
          pv(p^q)
1
1
1
1
1
0
0
1
0
1
0
0
0
0
0
0



·       p^(pvq) <=> p

           p
           q
          pvq
          P^(pvq)
1
1
1
1
1
0
1
1
0
1
1
0
0
0
0
0


Column  1st & 4th in both the cases are same, hence the absorption laws    pv(p^q)óp    &    p^(pvq)óp      are verified.

2.   Use truth tables to verify that each of the following is a                                                                 logical implication.

      I.                   [(p->q)^(q->r)] -> (p->r)
   II.                   [(p->q)^~q] -> ~p
III.                   [(pvq)^~p] -> q
IV.                   [(p->r)^(q->r)] -> [(pvq)->r]


a)       [(p->q)^(q->r)] -> (p->r)
p
q
r
p->q [A]
q->r [B]
A^B [C]
p->r [D]
C->D
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
1
1
0
1
0
1
0
1
1
1
0
0
0
1
0
0
1
0
1
1
1
1
1
1
1
0
1
0
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
0
1
1
1
1
1



               
                  
b)       [(p->q)^~q] -> ~p

p
q
p->q [X]
~q
X^~q [Y]
~p
Y->~p
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
1
0
0
1
1
0
0
1
1
1
1
1



c)             [(pvq)^~p] -> q

p
q
pvq   [X]
~p
X^~p [Y]
Y->q
1
1
1
0
0
1
1
0
1
0
0
1
0
1
1
1
1
1
0
0
0
1
0
1
 


             
  d)          [(p->r)^(q->r)] -> [(pvq)->r]

p
q
r
p->r [A]
q->r [B]
A^B [C]
pvq [D]
D->r [E]
C->E
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
0
1
1
0
1
1
1
1
1
1
1
1
0
0
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
0
1
0
1
0
0
1
0
1
0
0
1
1
1
1
0
1
1
0
0
0
1
1
1
0
1
1


All the above are logical implication because in last column we get the column as tautology so by this logical implication is verified in the truth table.






4.  Let  A = { 1 ,{ 1 } , { 2 } }
            Which of the following statements are true?
 a) 1 Є A                             b ) { 1 } Є A   
c) { 1 } C A                         d) {{ 1 }} C A
e) { 2 } Є A                          f) { 2 } C A
g) {{ 2 }} C A                      h) {{ 2 }} C A

a)    1 Є A                        - True

b)   { 1 } Є A                   - True

c)    { 1 } C A                   - True

d)   {{ 1 }} C A                - True

e)    { 2 } Є A                   - True                  

f)      { 2 } C A                   - False

g)    {{ 2 }} C A                - True                

h)   {{ 2 }} C A                - False

No comments:

Post a Comment