Tuesday, November 16, 2010

TEAM 1  -

 Assignment

1. Determine whether each of the following sentences is a statement.

a) In 1998 William Clinton was the  President  of  the  United  states.  - It is a statement.
b) x+3 is a positive integer.-    Not a statement.
c) Fifteen is an even number. -   It is a statement.
d) If Jennifer is late for the party, then her cousin Zachary will be quite angry.- It is a statement.
 e) What time is it?     -Not a statement.
f)  As  of  June 30,1998,Christine Marie Evert had  won the French Open seven times.- It is a statement

2) Use truth tables to verify the following logical equivalences


i) p → (q/\r)<==>(p→ q)/\(q→ r)
ii) [(p\/q) → r ] <==>[ ( p→ r ) /\(q→ r)]
iii) [p→ (q\/r)] <==> [¬r→ (p→ q)]
Ans : i)
    P
    Q
    r
  q/\r
  p→(q/\r)
p→ q
  p→ r
(p→ q)/\(p→ r)
    0
    0
    0
      0
            1
     1
     1
             1
    0
    0
    1
      0
            1
     1
     1
             1
    0
    1
    0
      0
            1
     1
     1
             1
    0
    1
    1
      1
            1
     1
     1
             1
    1
    0
    0
      0
            0
     0
     0
             0
    1
    0
    1
      0
            0
     0
     1
             0
    1
    1
    0
      0
            0
     1
     0
             0
    1
    1
    1
      1
            1
     1
     1
             1
Hence they are logically equivalent.




 Ans : ii)       
    P
   Q
    r
     p\/q
(p\/q)→r
p→ r
q→ r
(p→ r)/\(q→ r)
    0
    0
    0
        0
       1
    1
     1
             1
    0
    0
    1
        0
       1
    1
     1
             1
    0
    1
    0
        1
       0
    1
     0
             0
    0
    1
    1
        1
       1
    1
     1
             1
    1
    0
    0
        1
       0
    0
     1
             0
    1
    0
    1
        1
       1
    1
     1
             1
    1
    1
    0
        1
       0
    0
     0
             0
    1
    1
    1
        1
       1
    1
     1
             1

    Hence they are logically equivalent.



Ans : iii)
   P
    Q
      r
   q\/r
   p→(q\/r)
   p→ q
  ¬r→(p→ q)
   0
    0
     0
      0
          1
        1
          1
   0
    0
     1
      1
          1
        1
          1
   0
    1
     0
      1
          1
        1
          1
   0
    1
     1
      1
          1
        1
          1
   1
    0
     0
      0
          0
        0
          0
   1
    0
     1
      1
          1
        0
          1
   1
    1
     0
      1
          1
        1
          1
   1
    1
     1
      1
          1
        1
          1
Hence they are logically equivalent.

 b). Use the substitution rules to show that

Ans :  [p→ (q\/r)]<=> [(p/\¬q) → r]
          [p→ (q\/r)] ó [¬r→ (p→ q)]                       From part (iii) of part (a)
                               ó [¬r→ (¬p\/q)]                      By the 2nd Substitution Rule,
                                                                                         And (p→ q)ó(¬p\/q)
                                 ó [¬ (¬p\/q)→  ¬¬r]                By the 1st Substitution Rule,
          And (s→ t)ó (¬t → ¬s) for any
            Primitive statement   s, t
                             ó [(¬¬p/\¬q) → r]                      By De Morgan’s   Law, Double Negation
                             ó [(p /\¬q) → r]         By Double Negation and   2nd Substitution Rule

3. The following are three valid arguments. Establish the validity of each by means of a truth table.In each case, determine   which rows of the table are crucial for assessing the validity of the argument and which rows can be ignored.

a)      [p/\(p→ q)/\r]→[(p\/q)→r]
b)      [[(p/\q)→r]/\¬q/\(p→¬r)]→(¬p\/¬q)
c)       [[p\/(q\/r)/\¬q]→(p\/r)
Ans:  a)
  P
   q
    R
   p→q
  p\/q
(p\/q)→r
   0
   0
   0
     1
     0
      1
   0
   0
   1
     1
     0
      1
   0
   1
   0
     1
     1
      0
   0
   1
   1
     1
     1
      1
   1
   0
   0
     0
     1
      0
   1
   0
   1
     0
     1
      1
   1
   1
   0
     1
     1
      0
   1
   1
   1
     1
     1 
      1

The validity of the argument follows from the results in the last row.



Ans: b)
   p
    q
     R
   p/\q
  (p/\q)→r
   ¬q
    ¬r
   p→¬r
 ¬p\/¬q
   0
    0
    0
       0
          1
       1
     1
       1
       1
   0
    0
    1
       0
          1
       1
     0
       1
       1
   0
    1
    0
       0
          1
       0
     1
       1
       1
   0
    1
    1
       0
          1
       0
     0
       1
       1
   1
    0
    0
       0
          1
       1
     1
       1
       1
   1
    0
    1
       0
          1
       1
     0
       0
       1
   1
    1
    0
       1
          0
       0
     1
       1
       0
   1
    1
    1
       1
          1
       0
     0
       0
       0

The validity of the argument follows the results in 1, 2, 5.







Ans: c)
      p
      Q
      R
     q\/r
    p\/(q\/r)
     ¬q
      p\/r
     0
      0
     0
       0
          0
      1
        0
     0
      0
     1
       1
          1
      1
        1
     0
      1
     0
       1
          1
      0
        0
     0
      1
     1
       1
          1
      0
        1
     1
      0
     0
       0
          1
      1
        1
     1
      0
     1
       1
          1
      1
        1
     1
      1
     0
       1
          1
      0
        1
     1
      1
     1
       1
          1
      0
        1

The results in rows 2,5,6 establish the validity of the given argument.


4) Which of the following sets are equal?

a) { 1,2,3 }                               b) { 3,2,1,3 }
c) {3,1,2,3 }                             d) {1,2,2,3}

Ans : As all the sets contains same elements ,therefore they are all same set.



1 comment: