Tuesday, November 16, 2010

TEAM 9




                                                                                                                               
                                                                                                                                     
Q.2.1.9 )  which of the compound statements are tautology.
ans )
a]  ~(pv~q) -> ~p
   

p q ~q pv~q ~(pv~q)                 ~P ~(PV~q)-> ~p

0 0  1  1     0                                1       1

0       1  0  0     1                                1                        1
 
1 0                   1                  1                     0                                0                        1

1 1                   0                  1                     0                                0                        1



above compound statement is tautology.




b]  p -> (q -> r)

p q r q -> r p -> (q -> r)


0 0 0 1    1

0 0 1 1                     1

0 1 0` 0    1

0 1 1 1    1

1 0 0 1    1

1 0 1 1    1

1 1 0 0    0

1 1 1 1    1

above compound statement is not a tautology.


c]   (p -> q) -> r

p q r p -> q  (p -> q) -> r

0 0 0 1     0

0 0 1 1     1

0 1 0 1     0

0 1 1 1     1

1 0 0 0     1

1 0 1 0     1

1 1 0 1     0

1 1 1 1     1

it is also not a tautology



d]   (p -> q) -> (q -> p)

p q (p -> q)   q -> p     (p -> q) -> (q -> p)

0 0 1                      1                                    1

0 1 1     0     0

1 0 0     1   1

1 1 1     1   1

it is also not a tautology



e]  [ p ^ (p -> q)] -> q

p q p -> q  p ^ (p -> q) q             [ p ^ (p -> q) ] -> q

0 0 1     0 0    1

0 1 1     0 1    1

1 0 0     0 0    1

1 1 1     1 1    1

the above compound statement is tautology




f]  (p ^ q) -> p

p q p ^ q  (p ^ q) -> p

0 0 0    1

0 1 0    1

1 0 0    1

1 1 1    1




g]   q <-> (~p v ~q)

p q ~ p ~q ~p v ~q       q <-> (~p v ~q)

0 0 1 1  1                               0

0 1 1 0  1                               0

1 0 0 1  1               1

1 1 0 0  0               0


the above compound statement is not a tautology


h]   [ (p -> q) ^ (q -> r) ] -> (p -> r)

p q r p -> q q -> r      [ (p -> q) ^ (q -> r) ]     (p ->r)  y

0 0 0 1   1                  1 1                    1

0 0 1 1   1 1                  1   1

0 1 0 1   0 0 1   1

0 1 1 1   1 1 1    1

1 0 0 0   1 0 0    1

1 0 1 o   1 0 1                     1

1 1 0 1   0 0 0     1

1 1 1 1   1 1 1                      1

hence above statement is tautology.



Q. 2.2.9 )  write the converse,inverse and contrapositive of each of the following implications. for each implication,determine its truth value as well as the truth values of its 
corresponding converse,inverse and contrapositive.

ans )
a )  if today is labour day, then tomorrow is tuesday.

the statement is :

p: Today is labour day.

q: Tomorrow is Tuesday.

1.) p -> q
2.) ~q ->p  is contrapositive of p ->q
3.) q -> p is converse of p->q
4.) ~p->~q  is inverse of p->q

p q ~q ~p ~q->~p    q->p      ~p->~q       p->q

0 0 1 1  1     1    1    1

0 1 0 1  1     0    0    1

1 0 1 0  0     1                 1                  0

1 1 0 0  1     1                 1    1

1.)  If today is labour day then tomorrow is tuesday.

2.)  If tomorrow is not tuesday then today is not labour day. -> contrapositive -> true

3.)  If tomorrow is tuesday then today is labour day -> converse. -> true

4.)  If today is not labour day then tomorrow is not tuesday. -> inverse -> true



b ) if -1<3 and 3+7=10 then sin (3#/2) = -1          where # is pie

then statement is

p: -1<3 and 3+7=10

q: sin (3#/2) = -1

then we obtain

p -> q   is true 

~q -> ~p   is true

q -> p   is true

~p -> ~q    is true




Q.2.4.2 )  let p(x),q(x) be defined as in exercise 1. let r(x) be the open statement " x>0 " once again the universe comprises all integers 
determine the truth values of the folllowing statements.

ans. )

a) 1.) p(3) v [ q(3) v ~r(3) ] is true where p(3) is TRUE and q(3) is false and r(3) is true then the negation is false so we can say p(3) v [ q(3) v ~r(3) ] is true.

2. )  p(2) -> [ q(2) -> r(2) ] is true when p(2) is true and q(2) is true and r(2) is true so we can say that is is TRUE.

3. )  [ p(2) ^ q(2) ] -> r(2)   is true when p(2) is true and q(2) is true and r(2) is true so we can say that [ p(2) ^ q(2) ] -> r(2) is true.

4. )  p(0) -> [ ~q(-1) <-> r(1) ] is true when p(0) is true and q(-1) is false then ~q(-1) is true and r(1) is true so we can say that it is true.



b. )

[ p(x) ^ q(x) ] ^ r(x) is true for  x = 2.




Q. 3.1.9 )   which of the following sets are nonempty ?

ans. )
a. )  A = { x | x E N,2x +7 = 3 }

since |A|= 6
so it is a nonempty set.

b.)  B = { x E Z | 3x+5=9 }

since |B| = 7

so it is a non empty set.

c. )  { x | x E Q, pow(x,2) + 4 = 6 }

if B has pow (2,n) subsets of odd cardinality then |B|= n+1.

d. ) { x E R | pow(x,2) + 4 = 6 }

it is not a nonempty set.

e. )  { x E R | pow(x,2) + 3x + 3 = 0 }

it is also nota nonempty set.

f. )  { x | x E C, pow(x,2) + 3x + 3 = 0 }

it is non a nonempty set.

No comments:

Post a Comment