Tuesday, November 16, 2010

                                                                     TEAM 14

EX:-2.1
(QNO:-14) At the start of a program the integer variable n is assigned the value 7. Determine the value of n after each of the following successive statements is encountered during the execution of this program.[Here the value of n following the execution of the statement in part(a) becomes the value of n for the statement in part(b),and so on,through  the statement in part(d).For positive integer a,b[a/b] returns the integer part of the quotient-for example,[6/2]=3,[2/5]=0,and[8/3]=2.]
a)      if n>5 then n:= n + 2
b)      if((n+2=8) or (n-3=6)) then n:= 2 * n + 1
c)      if((n-3=16) and ([n/6]= 1)) then n:=  n + 3
d)     if((n≠21) and (n-7= 15)) then n:=  n – 4
Solution:-
a)      n > 5 and n=7 (given)
so n = n + 2
             = 7 + 2
             = 9

b)      n + 2 = 9 + 2 =11 ≠ 8 (false)
      Or
      n – 3 = 9 – 3 = 6 = 6 (true)
      so n = 2 * n + 1
             = 2 * 9 + 1
             = 18 + 1
             = 19

c)      n-3=16  (given)
19-3=16 (true)
And
      [n/6] = 1  (given)
[19/6]= 3 ≠ 1 (false)
Hence n = 19

d)     (n≠21)  given
n =19 ≠ 21 (true)
And
n-7 = 15  (given)
19 – 7 =12 ≠ 15 (false)
Hence n = 19






EX:-2.2
(QNO.14) For primitive statement p,q          
a)      Verify that p→[q→(p۸q)] is a tautology.
b)      Verify that (p۷q)→[q→q] is a tautology by using the result from part (a) along with the substitution rules and the law of logic.
c)      Is (p۷q)→[q→(p۸q)] a tautology?
Solution:-
p
q
p۸q
q→(p۸q)
p→[q→(p۸q)]
1
1
1
     1
       1
1
0
0
     1
       1
0
1
0
     0
       1
0
0
     1
       1
             a)





                  Hence the given compound statement is a tautology.

             b) Taking the compound statement from part (a)
                 p→[q→(p۸q)]
              = q→[q→(q۸q)]    (by substitution rule)
              = q→[q→q]           (by idempotent law)
                Take the compound statement from part (b)
                And let this statement is a tautology then
               (p۷q)→[q→q]
             = (q۷q)→[q→q]       (by substitution rule)
             = q→[q→q]              (by idempotent law)
                Hence both are logically equivalence
                So assumption is true.
                Thus (p۷q)→[q→q] is a tautology.

            c)
p
q
(p۸q)
q→(p۸q)

(p۷q)
(p۷q)→[q→(p۸q)]
1
1
  1
      1
  1
          1
1
0
  0
      1
  1
          1
0
1
  0
      0
  1
          0
0
0
  0
      1
  0
          1





                     
                           Hence the given compound statement is not a tautology.










EX:-2.4
(QNO:-7) For the universe of all integer,let p(x),q(x),r(x),s(x),and t(x) be the following open statements.
P(x): x > 0
q(x): x is even
r(x): x is a perfect square
s(x): x is (exactly) divisible by 4
t(x): x is (exactly) divisible by 5                    
a) Write the following statements in symbolic form.
   (1) At least one integer is even.
   (2) There exists a positive integer that is even.
   (3) If x is even, then x is not divisible by 5.
   (4) No even integer is divisible by 5.
   (5) There exists an even integer divisible by 5.
   (6) If x is even and x is a perfect square, then x is divisible by 4.
b) Determine whether each of the six statements in part (a) is true or false. For each false statement, provide a counterexample.
c) Express each of the following symbolic representations in words.
    1) For All x [r(x)→p(x)]             (2) For All x [s(x)→q(x)]
    3) For All x [s(x)→ ¬t(x)]           (4) For All x [s(x)۸ ¬r(x)]
d) Provide a counterexample for each false statement in part (c)
Solution:-
  a) (1) For Some x q(x)
      (2) For Some x [p(x)۸q(x)]
      (3) For All x [q(x)→ ¬t(x)]
      (4) For All x [q(x)→ ¬t(x)]
      (5) For Some x [q(x)۸t(x)]
      (6) For All x [q(x)۸r(x)→s(x)].
  b) (1) True
      (2) True
      (3) False (ex:- 10,20,30)
      (4) False (ex:- 10,20,30)
      (5) True
      (6) True
            c) (1) If x is a perfect square, then x > 0.
                (2) If x is divisible by 4 then x is a even no.
.               (3) If x is divisible by 4 then x is not divisible by 5.
                (4) There exists an integer divisible by 4 but it is not a perfect square)
  d) (1) False (ex:-0)
      (2) True
      (3) False (ex:- 20,60)
      (4) True

.


EX:-3.1
(QNO:-14) Give an example of three sets w,x,y such that w belongs to x and x belongs to y but w belongs to y.
Solution:-
               If  w belongs to x
                means all the elements of w will be in x.
.              If  x belongs to y
                means all the elements of x will be in y.
                hence all the elements of w will be in y . .
.             Therefore x belongs to y
               So, there is no such example.





SUBMITTED BY:- GROUP 14


                

1 comment:

  1. Casino, Hotel & Racing - JamBase
    Featuring a 5-star hotel & racing track, the Casino, Hotel & Racing 하남 출장마사지 Casino features restaurants, 용인 출장마사지 bars, an outdoor swimming pool, 사천 출장마사지 free 여수 출장안마 WiFi, 문경 출장마사지 and a

    ReplyDelete